Improved automated detection of embolic signals using a novel frequency filtering approach.

نویسندگان

  • H Markus
  • M Cullinane
  • G Reid
چکیده

BACKGROUND AND PURPOSE Asymptomatic embolic signal detection with the use of Doppler ultrasound has a number of potential clinical applications. However, its more widespread clinical use is severely limited by the lack of a reliable automated detection system. Design of such a system depends on accurate characterization of the unique features of embolic signals, which allow their differentiation from artifact and background Doppler speckle. We used a processing system with high temporal resolution to describe these features. We then used this information to design a new automated detection system. METHODS We used a signal processing approach based on multiple overlapping band-pass filters to characterize 100 consecutive embolic signals from patients with carotid artery disease as well as both episodes of artifact resulting from probe tapping and facial movement and episodes of Doppler speckle. We then designed an automated detection system based both on these embolic signal characteristics and on the fact that embolic signals have maximum intensity over a narrow frequency range. This system was tested in real time on stored 5-second segments of data. RESULTS The value of peak velocity at maximal intensity discriminated best between embolic signals and artifact and allowed differentiation with 100% sensitivity and specificity. Relative intensity increase, intensity volume, area under volume, average rise rate, and average fall rate appeared to discriminate best between embolic signals and Doppler speckle. For the majority of embolic signals, the intensity increase was spread over a narrow frequency or velocity range. The automated system we developed detected 296 of 325 carotid stenosis embolic signals from a new data set (sensitivity, 91.1%). All 200 episodes of artifact from a new data set were differentiated from embolic signals. Only 2 of 100 episodes of speckle were misidentified as embolic signals. CONCLUSIONS Using a novel system for automated detection, which utilizes the fact that embolic signals have maximum intensity over a narrow frequency range, we have achieved detection with a high sensitivity and high specificity. These results are considerably better than those previously reported. We tested this initial system on short 5-second segments of data played in real time. This approach now needs to be developed for use in a true online system to determine whether it has sufficient sensitivity and specificity for clinical use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Online automated detection of cerebral embolic signals using a wavelet-based system.

Transcranial Doppler ultrasound (US) can be used to detect emboli in the cerebral circulation. We have implemented and evaluated the first online wavelet-based automatic embolic signal-detection system, based on a fast discrete wavelet transform algorithm using the Daubechies 8th order wavelet. It was evaluated using a group of middle cerebral artery recordings from 10 carotid stenosis patients...

متن کامل

Evaluation of new online automated embolic signal detection algorithm, including comparison with panel of international experts.

BACKGROUND AND PURPOSE The clinical application of Doppler detection of circulating cerebral emboli will depend on a reliable automated system of embolic signal detection; such a system is not currently available. Previous studies have shown that frequency filtering increases the ratio of embolic signal to background signal intensity and that the incorporation of such an approach into an offlin...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Experimental and numerical study of delamination detection in a WGF/epoxy composite plate using ultrasonic guided waves and signal processing tools

Reliable damage detection is one of the most critical tasks in composite plate structures. Ultrasonic guided waves are acknowledged as an effective way of structural health mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stroke

دوره 30 8  شماره 

صفحات  -

تاریخ انتشار 1999